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Abstract

Inspired by the recent success of self-supervised methods
applied on images, self-supervised learning on graph struc-
tured data has seen rapid growth especially centered on
augmentation-based contrastive methods. However, we ar-
gue that without carefully designed augmentation techniques,
augmentations on graphs may behave arbitrarily in that the
underlying semantics of graphs can drastically change. As
a consequence, the performance of existing augmentation-
based methods is highly dependent on the choice of augmen-
tation scheme, i.e., hyperparameters associated with augmen-
tations. In this paper, we propose a novel augmentation-free
self-supervised learning framework for graphs, named AF-
GRL. Specifically, we generate an alternative view of a graph
by discovering nodes that share the local structural informa-
tion and the global semantics with the graph. Extensive ex-
periments towards various node-level tasks, i.e., node clas-
sification, clustering, and similarity search on various real-
world datasets demonstrate the superiority of AFGRL. The
source code for AFGRL is available at https://github.com/
Namkyeong/AFGRL.

1 Introduction
Recently, self-supervised learning paradigm (Liu et al.
2021), which learns representation from supervision sig-
nals derived from the data itself without relying on
human-provided labels, achieved great success in many do-
mains including computer vision (Gidaris, Singh, and Ko-
modakis 2018; Noroozi and Favaro 2016), signal process-
ing (Banville et al. 2021, 2019), and natural language pro-
cessing (Devlin et al. 2018; Brown et al. 2020). Specifi-
cally, contrastive methods, which are at the core of self-
supervised learning paradigm, aim to build effective repre-
sentation by pulling semantically similar (positive) pairs to-
gether and pushing dissimilar (negative) pairs apart (Hjelm
et al. 2018; Oord, Li, and Vinyals 2018), where two aug-
mented versions of an image are considered as positives, and
the remaining images are considered as negatives. Inspired
by the success of the contrastive methods in computer vi-
sion applied on images, these methods have been recently
adopted to graphs (Xie et al. 2021).
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Figure 1: Augmentations on images ((a)) keep the under-
lying semantics, whereas augmentations on graphs ((b),(c))
may unexpectedly change the semantics.

Although self-supervised contrastive methods have been
shown to be effective on various graph-related tasks, they
pay little attention to the inherent distinction between im-
ages and graphs: while augmentation is well defined on im-
ages, it may behave arbitrarily on graphs. For example, in
the case of images, even after randomly cropping and ro-
tating them, or distorting their color, their underlying se-
mantic is hardly changed (Figure 1 (a)), and even if the se-
mantic changes, humans can readily recognize the change
visually, and choose an alternative augmentation approach
that preserves the semantic. On the other hand, when we
perturb (drop or add) edges/nodes, and their features of a
graph, we cannot ascertain whether the augmented graph
would be positively related to the original graph, and what
is worse, it is non-trivial to verify the validity of the aug-
mented graph since graphs are hard to visualize. For exam-
ple, in molecular graphs, dropping a carbon atom from the
phenyl ring of aspirin breaks the aromatic system and re-
sults in a alkene chain (Figure 1(b)). Moreover, perturbing
the connection of aspirin might introduce a molecule of to-
tally different property, namely, five-membered lactone (Sun
et al. 2021a). Likewise, in social graphs, randomly dropping
edges might also lead to semantic changes, especially when
these edges are related to hub nodes. For example, as shown
in Figure 1(c), if the edge between Bob and Alice is dropped,
it would take much longer distance for Bob to reach Com-
munity 3 (i.e., from 2-hops to 5-hops), which also alters the
relationship between Community 1 and Community 3. We
argue that this is mainly because graphs contain not only the
semantic but also the structural information.

ar
X

iv
:2

11
2.

02
47

2v
2 

 [
cs

.L
G

] 
 7

 D
ec

 2
02

1

https://github.com/Namkyeong/AFGRL
https://github.com/Namkyeong/AFGRL


Due to the aforementioned arbitrary behavior of augmen-
tation on graphs, the quality of the learned graph represen-
tations of previous augmentation-based contrastive meth-
ods (Hassani and Khasahmadi 2020; Zhu et al. 2020, 2021;
Thakoor et al. 2021; Sun et al. 2021a; Veličković et al. 2018)
is highly dependent on the choice of the augmentation
scheme. More precisely, in order to augment graphs, these
methods perform various augmentation techniques such as
node/edge perturbation and node feature masking, and the
amount by which the graphs are augmented is controlled by
a set of hyperparameters. However, these hyperparameters
should be carefully tuned according to which datasets, and
which downstream tasks are used for the model evaluation,
otherwise the model performance would vary greatly (You
et al. 2021). Moreover, it is also shown that the performance
on downstream tasks highly resort to which combinations
of the augmentation techniques (You et al. 2020; Sun et al.
2021a) are used.

Furthermore, even after discovering the best hyperparam-
eters for augmentations, another limitation arises due to the
inherent philosophy of contrastive learning. More precisely,
inheriting the principle of instance discrimination (Wu et al.
2018), contrastive methods treat two samples as a positive
pair as long as they are two augmented versions of the same
instance, and all other pairs are treated as negatives. Al-
though this approach is effective for learning representations
of images (Chen et al. 2020; He et al. 2020), simply adopt-
ing it to graphs by treating all other nodes apart from
the node itself as negatives overlooks the structural in-
formation of graphs, and thus cannot benefit from the rela-
tional inductive bias of graph-structured data (Battaglia et al.
2018). Lastly, due to the nature of contrastive methods, a
large amount of negative samples is required for improv-
ing the performance on the downstream tasks, requiring high
computational and memory costs, which is impractical in re-
ality (Thakoor et al. 2021).
Contribution. We propose a self-supervised learning
framework for graphs, called Augmentation-Free Graph
Representation Learning (AFGRL), which requires neither
augmentation techniques nor negative samples for learning
representations of graphs. Precisely, instead of creating two
arbitrarily augmented views of a graph and expecting them
to preserve the semantics of the original graph, we use the
original graph per se as one view, and generate another view
by discovering, for each node in the original graph, nodes
that can serve as positive samples via k-nearest-neighbor
(k-NN) search in the representation space. Then, given the
two semantically related views, we aim to predict, for each
node in the first view, the latent representations of its pos-
itive nodes in the second view. However, naively selecting
positive samples based on k-NN search to generate an alter-
native view can still alter the semantics of the original graph.

Hence, we introduce a mechanism to filter out false posi-
tives from the samples discovered by k-NN search. In a nut-
shell, we consider a sample to be positive only if either 1)
it is a neighboring node of the target node in the adjacency
matrix (local perspective), capturing the relational inductive
bias inherent in the graph-structured data, or 2) it belongs
to the same cluster as the target node (global perspective).

Moreover, by adopting BYOL (Grill et al. 2020) as the back-
bone of our model, negative samples are not required for the
model training, thereby avoiding the “sampling bias” (Lin
et al. 2021), i.e. the negative samples may have the same
semantics with the query node, which would result in less
effective representation (Saunshi et al. 2019).

Our extensive experiments demonstrate that AFGRL out-
performs a wide range of state-of-the-art methods in terms of
node classification, clustering and similarity search. We also
demonstrate that compared with existing methods that heav-
ily depend on the choice of hyperparameters, AFGRL is sta-
ble over hyperparameters. To the best of our knowledge, AF-
GRL is the first work that learns representations of graphs
without relying on manual augmentation techniques and
negative samples.

2 Related Work
Contrastive Methods on Graphs. Recently, motivated by
the great success of self-supervised methods on images, con-
trastive methods have been increasingly adopted to graphs.
DGI (Veličković et al. 2018), a pioneering work highly in-
spired by Deep InfoMax (Hjelm et al. 2018), aims to learn
node representations by maximizing the mutual information
between the local patch of a graph. i.e., node, and the global
summary of the graph, thereby capturing the global informa-
tion of the graph that is overlooked by vanilla graph convolu-
tional networks (GCNs) (Kipf and Welling 2016; Veličković
et al. 2017). DGI is further improved by taking into account
the mutual information regarding the edges (Peng et al.
2020) and node attributes (Jing, Park, and Tong 2021). In-
spired by SimCLR (Chen et al. 2020), GRACE (Zhu et al.
2020) first creates two augmented views of a graph by ran-
domly perturbing nodes/edges and their features. Then, it
learns node representations by pulling together the repre-
sentation of the same node in the two augmented graphs,
while pushing apart representations of every other node.
This principle (Wu et al. 2018) has also been adopted for
learning graph-level representations of graphs that can be
used for graph classification, (Sun et al. 2019; You et al.
2020; Hassani and Khasahmadi 2020). Despite the success
of contrastive methods on graphs, they are criticized for the
problem raised by the “sampling bias” (Bielak, Kajdanow-
icz, and Chawla 2021). Moreover, these methods require a
large amount of negative samples for the model training,
which incurs high computational and memory costs (Grill
et al. 2020).

To address the sampling bias issue, BGRL (Thakoor et al.
2021) learns node representations without using negative
samples. It learns node representations by encoding two aug-
mented versions of a graph using two separate encoders:
one is trained through minimizing the cosine loss between
the representations generated by the two encoders, while the
other encoder is updated by an exponential moving average
of the first encoder. Although the sampling bias has been
addressed in this way, BGRL still requires augmentations
on the original graph, which may lead to semantic drift (Sun
et al. 2021a) as illustrated in Figure 1. On the other hand,
our proposed method learns node representations without
any use of negative samples or augmentations of graphs.



Augmentations on Graphs. Most recently, various aug-
mentation techniques for graphs have been introduced. e.g.,
node dropping (You et al. 2020), edge modification (Jin et al.
2021; Qiu et al. 2020; Zhao et al. 2020), subgraph extrac-
tion (Jiao et al. 2020; Sun et al. 2021b), attribute masking
(Zhu et al. 2020, 2021) and others (Hassani and Khasahmadi
2020; Kefato and Girdzijauskas 2021; Suresh et al. 2021).
GRACE (Zhu et al. 2020) randomly drops edges and masks
node features to generate two augmented views of a graph.
GCA (Zhu et al. 2021) further improves GRACE by intro-
ducing advanced adaptive augmentation techniques that take
into account both structural and attribute information. How-
ever, due to the complex nature of graphs, the performance
on downstream tasks is highly dependent on the selection
of the augmentation scheme, as will be shown later in our
experiments (Table 1). Moreover, previous work (You et al.
2020; Sun et al. 2021a) have shown that there is no univer-
sally outperforming data augmentation scheme for graphs.
Lastly, Sun et al. (2021a) demonstrates that infusing do-
main knowledge is helpful in finding proper augmentations,
which preserves biological assumption in molecular graph.
However, domain knowledge is not always available in real-
ity. In this work, we propose a general framework for gen-
erating an alternative view of the original graph without re-
lying on existing augmentation techniques that may either
1) change the semantics of the original graph or 2) require
domain knowledge.

3 Problem Statement
Notations. Let G = (V, E) denote a graph, where V =
{v1, ..., vN} represents the set of nodes, and E ⊆ V × V
represents the set of edges. G is associated with a feature
matrix X ∈ RN×F , and an adjacency matrix A ∈ RN×N
where Aij = 1 iff (vi, vj) ∈ E and Aij = 0 otherwise.

Task: Unsupervised Graph Representation Learning.
Given a graph G along with X and A, we aim to learn a en-
coder f(·) that produces node embeddings H = f(X,A) ∈
RN×D, where D << F . In particular, our goal is to learn
node embeddings that generalize well to various down-
stream tasks without using any class information.

4 Preliminary: Bootstrap Your Own Latent
Before explaining details of our proposed method, we begin
by introducing BYOL (Grill et al. 2020), which is the back-
bone of our proposed framework. The core idea of BYOL
is to learn representations of images without using nega-
tive samples (Grill et al. 2020). Given two augmented views
of an image, BYOL trains two separate encoders, i.e., on-
line encoder fθ and target encoder fξ, and learns represen-
tations of images by maximizing the similarity of the two
representations produced by each encoder. More formally,
BYOL generates two views x1 ∼ t(x), and x2 ∼ t′(x)
of an image x given a set of transformations t ∼ T and
t′ ∼ T , and these two generated views of an image are
fed into the online and target encoders. Precisely, the online
encoder fθ produces online representation h1 = fθ(x1),
while the target encoder fξ produces target representation
h2 = fξ(x2). Then, both online and target representations

are projected to smaller representations z1 = gθ(h1) and
z2 = gξ(h2) using projectors gθ and gξ, respectively. Fi-
nally, an additional predictor qθ is applied on top of the
projected online representation, i.e., z1, to make the ar-
chitecture asymmetric. The objective function is defined as
Lθ,ξ = ‖q̄θ(z1)− z̄2‖2, where q̄θ(z1) and z̄2 denote l2-
normalized form of qθ(z1) and z2, respectively. A symmet-
ric loss L̃θ,ξ is obtained by feeding x2 into the online en-
coder and x1 into the target encoder, and the final objective
is to minimize LBYOL

θ,ξ = Lθ,ξ+ L̃θ,ξ. At each training itera-
tion, a stochastic optimization step is performed to minimize
LBYOL
θ,ξ with respect to θ only, while ξ is updated using the

exponential moving average (EMA) of θ, which is empiri-
cally shown to prevent the collapsing problem (Chen and He
2021). More formally, the parameters of BYOL are updated
as θ ← optimizer

(
θ,∇θLBYOL

θ,ξ , η
)
, ξ ← τξ + (1− τ)θ,

where η is learning rate for online network, and τ ∈ [0, 1] is
the decay rate that controls how close ξ remains to θ.

5 Proposed Method
We first introduce how BYOL has been previously employed
on graphs (Thakoor et al. 2021), and discuss about the sev-
eral limitations of augmentation-based methods for graphs.
Finally, we present our proposed method, called AFGRL.
Generating Alternative Views via Augmentation.
BGRL (Thakoor et al. 2021) is a recently proposed fully
non-contrastive method for learning node representations
that does not leverage negative samples benefiting from
the framework of BYOL (Grill et al. 2020). Precisely,
BGRL generates two different views of a graph via manual
augmentations, i.e., node feature masking and edge masking
as done by previous methods (Zhu et al. 2020, 2021),
and the amount by which the graphs are augmented is
controlled by a set of hyperparameters. Then, two encoders,
i.e., online and target encoders, generate embeddings given
the augmented views of a graph as inputs, and the two
generated embeddings are learned to be close to each other.
To prevent the representations from collapsing to trivial
solutions, BGRL introduces a symmetry-breaking technique
(refer to Section 4 for more detailed explanation). It is also
worth noting that BGRL intentionally considers simple
augmentation techniques to validate the benefit of fully
non-contrastive scheme applied on graphs.
Limitation of Augmentation-based Methods on Graphs.
Although BGRL has been shown to be effective in a fully
non-contrastive manner, i.e., without using negative sam-
ples, we observe that the quality of the learned node repre-
sentations relies on the choice of the augmentation scheme.
In other words, performance on various downstream tasks
evaluated based on the representations learned by BGRL
varies greatly according to the choice of hyperparameters
associated with augmentations, and the best hyperparame-
ters are different for different datasets. This phenomenon
becomes even clearer when stronger augmentations, such
as diffusion (Hassani and Khasahmadi 2020), adaptive tech-
niques (Zhu et al. 2021) and the infusion of domain knowl-
edge (Sun et al. 2021a) are applied. Table 1 shows how
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Figure 2: The overall architecture of AFGRL. Given a graph, fθ and fξ generate node embeddings Hθ and Hξ both of which
are used to obtain k-NNs for node vi, i.e., Bi. Combining it with Ni, we obtain local positives, i.e., Bi ∩Ni. To obtain global
positives for node vi, K-means clustering is performed on Hξ, and the result Ci is combined with Bi, i.e., Bi∩Ci. Finally, we
combine local and global positives to obtain real positives, i.e., Pi. A predictor qθ projects Hθ to Zθ, which is used to compute
the final loss along with Hξ. Note that fθ is updated via gradient descent of the loss, whereas fξ is updated via EMA of fθ.

Comp. Photo CS Physics
Node

Classi.
BGRL -4.00% -1.06% -0.20% -0.69%
GCA -19.18% -5.48% -0.27% OOM

Node
Clust.

BGRL -11.57% -13.30% -0.78% -6.46%
GCA -26.28% -23.27% -1.64% OOM

Table 1: Performance sensitivity according to the hyperpa-
rameters for augmentations (i.e., edge drop and node fea-
ture masking) on node classification and clustering. Each
value indicates the relative performance difference between
the best vs. worst performing cases, i.e. − (best−worst)

best × 100.
The hyperparameters (i.e., probability of edge drop and node
feature masking) are chosen within the range from 0.0 to 0.5
to prevent a significant distortion of graphs.

the performance of augmentation-based methods varies ac-
cording to the hyperparameters associated with augmenta-
tions. More precisely, we report the relative performance of
the best performing case compared to the worst performing
case, i.e., -4.00% indicates that the worst case performs 4%
worse than the best case. We observe that the performance
in both tasks is sensitive to the hyperparameters, and that it
aggravates when a stronger augmentation technique is em-
ployed, i.e., GCA, in which case the role of augmentation
becomes even more important. Thus, we need a more stable
and general framework for generating an alternative view
of the original graph without relying on augmentation tech-
niques introduced in existing works.

5.1 Augmentation-Free GRL (AFGRL)
We propose a simple yet effective self-supervised learning
framework for generating an alternative view of the origi-
nal graph taking into account the relational inductive bias of
graph-structured data, and the global semantics of graphs.
For each node vi ∈ V in graph G, we discover nodes that
can serve as positive samples based on the node representa-
tions learned by the two encoders. i.e., online encoder fθ(·)
and target encoder fξ(·)1. More precisely, these encoders

1AFGRL adopts the architecture of BGRL (Thakoor et al.
2021), which is slightly modified from BYOL (Grill et al. 2020). In

initially receive the adjacency matrix A and the feature ma-
trix X of the original graph as inputs, and compute the on-
line and target representations. i.e., Hθ = fθ(X,A) and
Hξ = fξ(X,A) whose i-th rows, hθi and hξi , are representa-
tions for node vi ∈ V . Then, for a given query node vi ∈ V ,
we compute the cosine similarity between all other nodes in
the graph as follows:

sim(vi, vj) =
hθi · h

ξ
j

‖hθi ‖‖h
ξ
j‖
,∀vj ∈ V (1)

where the similarity is computed between the online and the
target representations. Given the similarity information, we
search for k-nearest-neighbors for each node vi, and denote
them by a set Bi, which can serve as positive samples for
node vi. Essentially, we expect the nearest neighbors in the
representation space to belong to the same semantic class as
the query node, i.e., vi in this case. Although Bi can serve
as a reasonable set of positive candidates for node vi, 1) it
is inherently noisy as we do not leverage any label infor-
mation, i.e., Bi contains samples that are not semantically
related to the query node vi. Moreover, only resorting to the
nearest neighbors in the representation space may not only
overlook 2) the structural information inherent in the graph,
i.e., relational inductive bias, but also 3) the global seman-
tics of the graph. To address these limitations, we introduce
a mechanism to filter out false positives from the samples
discovered by k-NN search, while also capturing the local
structural information and the global semantics of graphs.
Capturing Local Structural Information. Recall that we
expected the nearest neighbors found by k-NN search, i.e.,
Bi, to share the same class label as the query node vi. To
verify whether our expectation holds, we perform analy-
sis on two datasets, i.e., Amazon Computers and WikiCS
datasets as shown in Figure 3. First, we obtain node embed-
dings from a randomly initialized 2-layer GCN (Kipf and
Welling 2016), i.e., HRand-GCN = Rand-GCN(X,A), and
perform k-NN search for each node given the node embed-
dings HRand-GCN. Then, for each node, we compute the ratio

particular, projection networks, i.e., gθ(·) and gξ(·) are not used.

wxs
高亮



Figure 3: Analysis on the ratio of its neighboring nodes be-
ing the same label as the query node across different ks.
of its neighboring nodes being the same label as the query
node. In Figure 3, we observe that although the ratio is high
when considering only a small number of neighbors, e.g.,
k = 4, the ratio decreases as k gets larger in both datasets.
This implies that although our expectation holds to some ex-
tent, there still exists noise.

Hence, to filter out false positives from the nearest neigh-
bors found by k-NN search, i.e., Bi for each node vi, we
leverage the local structural information among nodes given
in the form of an adjacency matrix. i.e., relational induc-
tive bias. More precisely, for a node vi, its adjacent nodes
Ni tend to share the same label as the query node vi,
i.e., smoothness assumption (Zhu, Ghahramani, and Lafferty
2003). In Figure 3, we indeed observe that the ratio of the ad-
jacent nodes being the same label as the query node (“Adj”)
is about 70% in both datasets, which demonstrates the valid-
ity of the smoothness assumption. Therefore, to capture the
relational inductive bias reflected in the smoothness assump-
tion, while filtering out false positives from noisy nearest
neighbors, we compute the intersection between the nearest
neighbors and adjacent nodes, i.e., Bi ∩Ni. We denote the
set of these intersecting nodes as local positives of vi. In-
deed, Figure 3 shows that the local positives (“Rand. GCN
+ Adj”) consistently maintain high correct ratio even when
k increases.
Capturing Global Semantics. To capture the semantics of
nodes in a global perspective, we leverage clustering tech-
niques. The intuition is to discover non-adjacent nodes that
share the global semantic information with the query node.
For example, in an academic collaboration network whose
nodes denote authors and edges denote collaboration be-
tween authors, even though two authors work on the same
research topic (i.e., same label), they may not be connected
in the graph since they neither collaborated in the past nor
share any collaborators. We argue that such semantically
similar entities that do not share an edge can be discov-
ered via clustering in a global perspective. In this regard,
we apply K-means clustering algorithm on the target repre-
sentation Hξ to cluster nodes into a set of K clusters, i.e.
G = {G1, G2, ..., GK}, and c(hξi ) ∈ {1, ...,K} denotes
the cluster assignment of hξi , i.e., vi ∈ Gc(hξi )

. Then, we
consider the set of nodes that belong to the same cluster as
vi, i.e., Ci = {vj |vj ∈ Gc(hξi )

}, as its semantically sim-
ilar nodes in the global perspective. Finally, we obtain the
intersection between the nearest neighbors and the semanti-
cally similar nodes in the global perspective, i.e., Bi ∩ Ci,
and we denote the set of these intersecting nodes as global
positives of vi. In other words, nodes that are among the

Cluster 1

Adjacency (𝑵!)

Nearest Neighbors (𝑩!)

Cluster 2

Cluster 3

Query Node (𝑣!)

𝑣$
Node ( \𝑣!)

Local Positive (𝑩! ∩𝑵!)

Global Positive (𝑩! ∩ 𝑪!)

Real Positive (𝑷!)

Same cluster as 𝑣! (𝑪!)

𝑪$
𝑩$

Figure 4: An overview of obtaining real positives of node vi.

nearest neighbors of vi and at the same time belong to the
same cluster as vi are considered as globally positive neigh-
bors. It is important to note that as K-means clustering al-
gorithm is sensitive to the cluster centroid initialization, we
perform multiple runs to ensure robustness of the cluster-
ing results. Specifically, we perform K-means clustering M
times and obtain M sets of clusters, i.e., {G(j)}Mj=1, where

G(j) =
{
G

(j)
1 , G

(j)
2 , ..., G

(j)
K

}
is the result of j-th run of

the clustering. Then, we define Ci =
⋃M
j=1G

(j)

c(j)(hξi )
, where

c(j)(hξi ) ∈ {1, ...,K} denotes the cluster assignment of hξi
in the j-th run of clustering.

Objective Function. In order to consider both the local and
global information, we define the set of real positives for
node vi as follows:

Pi = (Bi ∩Ni) ∪ (Bi ∩Ci) (2)

Our objective function aims to minimize the cosine distance
between the query node vi and its real positives Pi:

Lθ,ξ = − 1

N

N∑
i=1

∑
vj∈Pi

zθih
ξ>
j∥∥zθi ∥∥∥∥∥hξj∥∥∥ , (3)

where zθi = qθ(h
θ
i ) ∈ RD is the prediction of the on-

line embedding hθi ∈ RD, and qθ(·) is the predictor net-
work. Following BYOL, AFGRL’s online network is up-
dated based on the gradient of its parameters with respect
to the loss function (Equation 3), while the target network
is updated by smoothing the online network. We also sym-
metrize the loss function. In the end, the online embeddings,
i.e., Hθ ∈ RN×D are used for downstream tasks. Figure 4
illustrates the overview of obtaining real positives of node
vi.

In summary, 1) AFGRL does not rely on arbitrary aug-
mentation techniques for the model training, thereby achiev-
ing stable performance. 2) AFGRL filters out false posi-
tives from the samples discovered by k-NN search, while
also capturing the local structural information, i.e., relational
inductive bias, and the global semantics of graphs. 3) AF-
GRL does not require negative samples for the model train-
ing, thereby avoiding sampling bias and alleviating com-
putational/memory costs suffered by previous contrastive
methods.

wxs
高亮
 locality = knn_neighbor * adj（代码实现）



WikiCS Computers Photo Co.CS Co.Physics
Sup. GCN 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
Raw feats. 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
node2vec 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04
DeepWalk 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15

DW + feats. 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09
DGI 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
GMI 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM

MVGRL 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GRACE 77.97 ± 0.63 86.50 ± 0.33 92.46 ± 0.18 92.17 ± 0.04 OOM

GCA 77.94 ± 0.67 87.32 ± 0.50 92.39 ± 0.33 92.84 ± 0.15 OOM
BGRL 76.86 ± 0.74 89.69 ± 0.37 93.07 ± 0.38 92.59 ± 0.14 95.48 ± 0.08

AFGRL 77.62 ± 0.49 89.88 ± 0.33 93.22 ± 0.28 93.27 ± 0.17 95.69 ± 0.10

Table 2: Performance on node classification (OOM: Out of memory on 24GB RTX3090). Figure 5: Sensitivity analysis.

6 Experiments
6.1 Experimental Setup
Datasets. To evaluate AFGRL, we conduct experiments
on five widely used datasets, including WikiCS, Amazon-
Computers (Computers), Amazon-Photo (Photo), Coauthor-
CS (Co.CS), and Coauthor-Physics (Co.Physics).

Methods Compared. We primarily compare AF-
GRL against GRACE (Zhu et al. 2020), BGRL (Thakoor
et al. 2021) and GCA (Zhu et al. 2021), which are the
current state-of-the-art self-supervised methods for learning
representations of nodes in a graph. For all baselines but
BGRL, we use the official code published by the authors. As
the official code for BGRL is not available, we implement
it by ourselves, and try our best to reflect the details pro-
vided in the original paper (Thakoor et al. 2021). We also
report previously published results of other representative
methods, such as DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), DGI (Veličković et al. 2018), GMI (Peng et al. 2020),
and MVGRL (Hassani and Khasahmadi 2020), as done in
(Thakoor et al. 2021; Zhu et al. 2021).

Evaluation protocol. We evaluate AFGRL on three node-
level tasks, i.e., node classification, node clustering and node
similarity search. We first train all models in an unsupervised
manner. For node classification, we use the learned embed-
dings to train and test a simple logistic regression classi-
fier (Veličković et al. 2018). We report the test performance
when the performance on validation data gives the best re-
sult. For node clustering and similarity search, we perform
evaluations on the learned embeddings at every epoch and
report the best performance.

Implementation details. We use a GCN (Kipf and
Welling 2016) model as the encoders, i.e., fθ(·) and fξ(·).
More formally, the encoder architecture is defined as:

H(l) = GCN(l)(X,A) = σ(D̂−1/2ÂD̂−1/2XW(l)), (4)

where H(l) is the node embedding matrix of the l-th layer for
l ∈ [1, ..., L], Â = A + I is the adjacency matrix with self-
loops, D̂ =

∑
i Âi is the degree matrix, σ(·) is a nonlinear

activation function such as ReLU, and W(l) is the trainable
weight matrix for the l-th layer. We perform grid-search on
several hyperparameters, such as learning rate η, decay rate
τ , node embedding dimension size D, number of layers of
GCN encoder L, for fair comparisons.

GRACE GCA BGRL AFGRL

WikiCS NMI 0.4282 0.3373 0.3969 0.4132
Hom. 0.4423 0.3525 0.4156 0.4307

Computers NMI 0.4793 0.5278 0.5364 0.5520
Hom. 0.5222 0.5816 0.5869 0.6040

Photo NMI 0.6513 0.6443 0.6841 0.6563
Hom. 0.6657 0.6575 0.7004 0.6743

Co.CS NMI 0.7562 0.7620 0.7732 0.7859
Hom. 0.7909 0.7965 0.8041 0.8161

Co.Physics NMI OOM OOM 0.5568 0.7289
Hom. OOM OOM 0.6018 0.7354

Table 3: Performance on node clustering in terms of NMI
and homogeneity.

GRACE GCA BGRL AFGRL

WikiCS Sim@5 0.7754 0.7786 0.7739 0.7811
Sim@10 0.7645 0.7673 0.7617 0.7660

Computers Sim@5 0.8738 0.8826 0.8947 0.8966
Sim@10 0.8643 0.8742 0.8855 0.8890

Photo Sim@5 0.9155 0.9112 0.9245 0.9236
Sim@10 0.9106 0.9052 0.9195 0.9173

Co.CS Sim@5 0.9104 0.9126 0.9112 0.9180
Sim@10 0.9059 0.9100 0.9086 0.9142

Co.Physics Sim@5 OOM OOM 0.9504 0.9525
Sim@10 OOM OOM 0.9464 0.9486

Table 4: Performance on similarity search. (Sim@n: Aver-
age ratio among n nearest neighbors sharing the same label
as the query node.)

6.2 Performance Analysis
Overall evaluation. Table 2 shows the node classification
performance of various methods. We have the following
observations: 1) Our augmentation-free AFGRL generally
performs well on all datasets compared with augmentation-
based methods, i.e., GRACE, GCA and BGRL, whose re-
ported results are obtained by carefully tuning the augmen-
tation hyperparameters. Recall that in Table 1 we demon-
strated that their performance is highly sensitive to the
choice of augmentation hyperparameters. This verifies the
benefit of our augmentation-free approach. 2) We also eval-
uate AFGRL on node clustering (Table 3) and similar-
ity search (Table 4). Note that the best hyperparameters
for node classification task were adopted. Table 3 shows
that AFGRL generally outperforms other methods in node
clustering task. We argue that this is mainly because AF-
GRL also considers global semantic information unlike the
compared methods. 3) It is worth noting that methods built
upon instance discrimination principle (Wu et al. 2018), i.e.,
GRACE and GCA, are not only memory consuming (OOM
on large datasets), but also generally perform worse than



their counterparts on various tasks (especially on cluster-
ing). This indicates that instance discrimination, which treats
all other nodes except itself as negatives without consider-
ing the graph structural information, is not appropriate for
graph-structured data, especially for clustering in which the
global structural information is crucial. 4) AFGRL gener-
ally performs well on node similarity search (Table 4). This
is expected because AFGRL aims to make nearest neigh-
bors of each node share the same label with the query node
by discovering the local and the global positives.

(Global) (Local) (Global) (Local)(Local+Global) (Local+Global)

Figure 6: Ablation study on AFGRL.

Ablation Studies. To verify the benefit of each compo-
nent of AFGRL, we conduct ablation studies on two datasets
that exhibit distinct characteristics, i.e., Amazon Computers
(E-commerce network) and WikiCS (Reference network).
In Figure 6, we observe that considering both local struc-
tural and global semantic information shows the best perfor-
mance. Moreover, we observe that the global semantic in-
formation is more beneficial than the local structural infor-
mation. This can be explained by the performance of “k-NN
only” variant, which performs on par with “k-NN + Adj”
variant. That is, we conjecture that performing k-NN on
the node representations learned by our framework can cap-
ture sufficient local structural information contained in the
adjacency matrix. Based on the ablation studies, we argue
that AFGRL still gives competitive performance even when
the adjacency matrix is sparse, which shows the practicality
of our proposed framework. Finally, the low performance of
“Clus-only” variant implies the importance of considering
the local structural information in graph-structured data.

Figure 7: Effect of embedding dimension size (D).

Hyperparameter Analysis. Figure 5 shows the sensitivity
analysis on the hyperparameters k and M of AFGRL. We
observe that k = 4 and M > 1 generally give the best per-
formance, while the performance is rather stable over vari-
ous Ms. This verifies that our augmentation-free approach
can be easily trained compared with other augmentation-
based methods, i.e., stable over hyperparameters, while out-
performing them in most cases. Moreover, in Figure 7, we
conduct experiments across various sizes of node embed-
ding dimension D. We observe that AFGRL benefits from

high-dimensional embeddings, while other methods rapidly
saturate when the dimension of embeddings increase. Note
that Zbontar et al. (2021) recently showed similar results in-
dicating that methods based on instance discrimination (Wu
et al. 2018) is prone to the curse of dimensionality.

Sampled Sampled

(a) GCA (b) AFGRL

Figure 8: t-SNE embeddings of nodes in Photo dataset.

Visualization of embeddings. To provide a more intuitive
understanding of the learned node embeddings, we visualize
node embeddings of GCA (Figure 8(a)) and AFGRL (Fig-
ure 8(b)) by using t-SNE (Van der Maaten and Hinton 2008).
Each point represents a node, and the color represents the
node label. We observe that node embeddings generated by
both methods are grouped together according to their cor-
responding node labels. However, the major difference is
that AFGRL captures more fine-grained class information
compared with GCA. That is, for AFGRL, there tend to be
small clusters within each label group. To emphasize this,
we sample the same set of nodes from each label, and com-
pare their embeddings (Figure 8 bottom). We clearly observe
that nodes are more tightly grouped in AFGRL compared
with GCA, which implies that AFGRL captures more fine-
grained class information.

7 Conclusion
In this paper, we propose a self-supervised learning frame-
work for graphs, which requires neither augmentation tech-
niques nor negative samples for learning representations of
graphs. Instead of creating two arbitrarily augmented views
of a graph and expecting them to preserve the semantics of
the original graph, AFGRL discovers nodes that can serve
as positive samples by considering the local structural in-
formation and the global semantics of graphs. The major
benefit of AFGRL over other self-supervised methods on
graphs is its stability over hyperparameters while maintain-
ing competitive performance even without using negative
samples for the model training, which makes AFGRL prac-
tical. Through experiments on multiple graphs on various
downstream tasks, we empirically show that AFGRL is su-
perior to the state-of-the-art methods that are sensitive to
augmentation hyperparameters.
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9 Appendix
9.1 Datasets
We evaluated the performance of AFGRL on node-level tasks, i.e.,
node classification, node clustering, and node similarity search.
We conduct experiments on five widely used datasets, including
Wiki-CS, Amazon-Computers, Amazon-Photo, Coauthor-CS, and
Coauthor-Physics. The detailed statistics are summarized in Ta-
ble 5.

• WikiCS (Mernyei and Cangea 2020) is reference network
constructed from Wikipedia references. Nodes denote articles
about computer science, and edges denote hyperlinks between
the articles. Articles are labeled with 10 related subfields, and
their features are average of Glove (Pennington, Socher, and
Manning 2014) embeddings of all words in the article.

• Amazon-Computers and Amazon-Photo (McAuley et al.
2015) are two networks of co-purchase relationships con-
structed from Amazon. Nodes denote products, and edges exist
between nodes if the products are frequently co-purchased. In
each dataset, products are labeled with 10 and 8 classes, re-
spectively, based on product category, and the node feature is a
bag-of-words representation of words in the product review.

• Coauthor-CS and Coauthor-Physics (Sinha et al. 2015) are
two academic networks containing co-authorship relationship
based on Microsoft Academic Graph. Nodes in these graphs
denote authors, and edges denote co-authored relationship. In
each dataset, authors are classified into 15 and 5 classes, re-
spectively, based on the author’s research field, and the node
feature is a bag-of-words representation of the paper keywords.

For WikiCS dataset, which provides 20 canonical train/valid/test
splits, we directly used the given splits. For Amazon and Coau-
thor datasets, we randomly split nodes 20 times into train/valid/test
(10/10/80) as these datasets do not provide standard splits.

# Nodes # Edges # Feat. # Cls.
WikiCS 11,701 216,123 300 10

Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

Coauthor-Physics 34,493 247,962 8,415 5

Table 5: Statistics for datasets used in this paper.

9.2 Compared methods
In this section, we explain methods that are compared with AF-
GRL in the experiments, and we summarize their properties in Ta-
ble 6.

• DGI (Veličković et al. 2018): A pioneering work for self-
supervised graph representation learning, which is motivated
by Deep InfoMax (Hjelm et al. 2018). DGI aims to learn node
representations by maximizing the mutual information between
the node and global summary vector of the graph.

• GMI (Peng et al. 2020): An advanced version of DGI that
learns node representations by leveraging more fine-grained in-
formation, i.e. subgraph. Specifically, GMI proposes to directly
measure the mutual information between input and node/edge
representations within one-hop neighbor, without explicit data
augmentation.

• MVGRL (Hassani and Khasahmadi 2020): It constructs views
of a graph with diffusion kernel and subgraph sampling. Then,
it learns to contrast node representations with global summary
vector across the two views.

• GRACE (Zhu et al. 2020). Inspired by SimCLR (Chen et al.
2020), it first creates two augmented views of a graph by ran-
domly perturbing nodes/edges and their features. Then, follow-
ing the principle of instance discrimination, it learns node rep-
resentations by contrasting it with all other nodes in the two
augmented graphs, while matching with the same node from
the two augmented graphs.

• GCA (Zhu et al. 2021): An advanced version of GRACE, which
proposes multiple augmentation schemes regarding the impor-
tance of nodes, edges and their features. The main idea is to
selectively augment a graph by keeping important parts of the
graph intact, while augmenting unimportant parts.

• BGRL (Thakoor et al. 2021): Inspired by BYOL (Grill et al.
2020), it learns node representations without using negative
samples. As conventional contrastive methods, BGRL lever-
ages siamese structured network with augmentation scheme.
However, even without relying on negative samples, BGRL pre-
vents a trivial solution through asymmetric model architecture
and stop gradient operations.

No Augmentation No Negative Sampling
DGI 7 7
GMI 3 7

MVGRL 7 7
GRACE 7 7

GCA 7 7
BGRL 7 3

AFGRL 3 3

Table 6: Properties of methods that are compared.

9.3 Implementation details
As described in Section 6.1 of the submitted manuscript, we use
GCN (Kipf and Welling 2016) encoders. The base encoder of AF-
GRL is a GCN model followed by batch normalization and non-
linearity. Following BGRL (Thakoor et al. 2021), the predictor qθ
of AFGRL is defined as a multi-layer perceptron (MLP) with batch
normalization. Note that since a single-layer GCN (i.e., GCN with
L = 1) works the best for AFGRL, the hidden size of fθ is not
defined. i.e., there is no hidden layer. For GCA and BGRL, we
adopt the best hyperparameter specifications that are reported in
their original paper, that is, Table 5 of (Zhu et al. 2021) for GCA,
and Table 5 of (Thakoor et al. 2021) for BGRL. For GRACE, since
the original paper (Zhu et al. 2020) did not evaluate on the datasets
used in our experiments, we follow the best hyperparameter speci-
fications that are reported in the GCA paper (Zhu et al. 2021), since
GRACE is equivalent to the GCA-T-A ablation of GCA, which is
also proposed by the same authors. Refer to Table 7 for more de-
tailed hyperparameter specifications of AFGRL.

It is important to note that AFGRL does not have hyperparam-
eters associated with graph augmentation, whose best performing
combinations is non-trivial to find2. Instead, AFGRL newly intro-
duced several hyperparameters, i.e., k, K, and M . However, we
observe that the model performance is stable over these hyperpa-
rameters as shown in Figure 5 of the submitted manuscript and
Figure 2 of this supplementaty material. Hence, we fixedK to 100,
M to 5, and selected k ∈ {4, 8}. This demonstrates the practicality
of AFGRL.

2The values of the best performing hyperparameters (i.e., pf,1,
pf,2, pe,1, and pe,2) vary greatly in range from 0.1 to 0.5. Refer to
Table 5 of (Zhu et al. 2021; Thakoor et al. 2021)



Embedding
size (D)

qθ hidden
size

Learning
rate (η)

Training
epochs Activation τ L k K M

WikiCS 1024 2048 0.001 1500 PReLU 0.9 1 8 100 5
Amazon Computers 512 1024 0.001 4000 PReLU 0.9 1 4 100 5

Amazon Photo 512 1024 0.001 3000 PReLU 0.9 1 4 100 5
Coauthor CS 1024 2048 0.001 1000 PReLU 0.9 1 4 100 5

Coauthor Physics 256 512 0.01 1000 PReLU 0.9 1 8 100 5

Table 7: Hyperparameter specifications for AFGRL. The three right-most columns denote the hyperparameters that are newly
introduced in AFGRL. In contrast to GRACE, GCA and BGRL, AFGRL does not have hyperparameters associated with graph
augmentation.

9.4 Reproducibility

Methods Source code
GRACE https://github.com/CRIPAC-DIG/GRACE

GCA https://github.com/CRIPAC-DIG/GCA
BGRL https://github.com/Namkyeong/BGRL Pytorch

AFGRL https://github.com/Namkyeong/AFGRL

Table 8: Source code links of the baseline methods.

Table 8 shows the github links to the source codes we used for
evaluation. All the compared methods but BGRL were publicly
available, and thus we implemented BGRL using PyTorch on our
framework.

https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA
https://github.com/Namkyeong/BGRL_Pytorch
https://github.com/Namkyeong/AFGRL
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